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SQIF Array Dynamics

1. Abstract

We develop an analytic perturbation solution for single-cell SQUIDs and for multi-cell rows

with random cell sizes (constrained by having a mirror symmetry about the center junction). The
response of a single SQUID to an external RF signal is determined in terms of correlation
functions between the phase of the inline effective junction and the circulating current. This
yields an RF phase shift that can be calculated as a function of the circuit parameters and the
signal frequency. Summing the phase-shifted RF voltages of many random-cell-size SQUIDs in
series yields the SQIF RF response.

2. Characterization of SQIF’s as RF Detectors

SQIF arrays were originaly developed to detect extremely small static and quasistatic
magnetic fields The paper by Schopohl et. a.' showed how it was possible to approximate the
RF response of a SQIF array to a low frequency RF signal by using the transfer function (DC
voltage vs externa magnetic field) in the narrow region near zero magnetic field, where the
transfer function is essentially linear. In a SQIF array the interference of the voltages of the
random-area-SQUID loops in the array leads to the steep slope of the transfer function near the
origin, which should be the only place where the voltages interfere constructively.

To characterize the merit of a SQIF array as an RF detector, it is necessary to take into
account both the Johnson-Nyquist noise of the array junctions and the appearance of intrinsic
nonlinear effects which determine the range of signal amplitudes in which the transfer function
can be considered linear. The widely accepted figure of merit for RF detectors is the ‘spur free
dynamic range’ (SFDR), which is a measure of the range of detector linearity, and is given by the
range (in dB) where the detector response (v2) for two signals that are close in frequency is above
the Johnson-Nyquist noise threshold, while the dightly frequency-shifted response due to cubic
mixing (at mw=2m,-m, Or w=2m,-w,) remains below the noise threshold.

The approach that we have taken is to fully determine the RF response of each row of a SQIF
array to the magnetic component of an RF field, and sum the voltages to obtain the total RF



response. This means that both the amplitude and RF phase of the response of each row at the
signal frequency are determined, in contrast to the approach in [1] where the phase shifts of each

row are taken to be the phase shifts at DC (i.e those due to the static external flux) which are
then assumed to be applicable to low frequency signals. The approach in [1] essentially treats the

RF signal as an adiabatically changing flux bias

To determine the SFDR of an array we start with the response of a single row, and with the
simplest case of asingle SQUID or asingle row SQIF with zero inductance that can be treated as

an equivaent effective single SQUID!. The linear response of the effective SQUID when the

input is a pair of small amplitude signals (amplitudes {a, ,,a, ,} at frequencies {w ,,®, ,} ) can

be solved, with solutions in the form of a sum of sinusoids at the signal frequencies wy; with

amplitudes Ai and phase shifts W, . For high T junctions . =0, and this allows good

approximate solutions to be obtained for the unperturbed SQUID voltage ¢, . and induced flux
Noc = BLige» Where the DC subscript refers to the response to ¢, , the DC component of the
magnetic flux threading the SQUID loop (the S, = 0 solution will be discussed further below). If
the linear response (8¢ ) is assumed to be avalid approximation for small amplitude RF signals,

then it can be determined in terms of the correlation functions

(sn(Goe)an(®52)) and (o, aos o1 ) o

(n(Gac)sin®e= o)) o

> Sin(wrf,if_lyrf,i)’

6§RF = ZA Sin(wrf,if_ lPrf,i) = Z[%j\/

0+ {0 oo o 1) )

where the RF phase shifts are given by

W =Sinl[wrf,i /\/wrzf'." <COS(CDC)COS(¢DC%)> J 3)

It can be seen that as long as the (coscos) correlation function is non-zero, the RF phase shift

W, will approach zero as the signal frequency w,; goesto zero. A useful corollary to this



behavior is that as the (coscos) correlation function becomes small and of the same order as

o, ; , the RF phase shift will depend sensitively on B, or ¢,. for fixed w, ;, or conversely it

when B, and ¢,. arefixed. It will be shown below that the

will be a steep function of

correlation function (coscos) becomes small when either 8, or ¢pc issmall.

3. Derivation of the Hamiltonians for Mirror Symmetric Row Arrays

The row arrays that we shall treat here can be considered as a subset of the completely random
SQIF array row described by Oppenlander et a.! in that they are random but have mirror
symmetry about a central junction. The Hamiltonians and equations of motion for mirror

symmetric row arrays are described by N, +1junction phases along with N, constraint
equations, and N, circulating currents (or their equivalent fluxes), for a total of N, +1
independent coordinates. The N, constraints may be included in the Lagrangian along with
N., Lagrange multipliers before forming the Hamiltonian. However, a ssimpler method is to
transform to a set of N, +1 coordinates that include the constraints, which then yield one
independent junction phase and N, independent circulating currents. We illustrate this with an
N, = 4 array shown below, where the middle junction is alowed to have a critical current that
differs from the remaining junctions by afactor of p.

I 1 A1 !

l l l l

ok 2 ke " ke % ke

&

I 71 =(4+p)i,

Figure 1. Four-Cell Array



We first transform the external fluxes {@:, @, @5, 9.} to the set {9., 9y, 0, O} , where
o, = (¢, + 0, + 9, +9¢,)/ 4 would be symmetric in all four fluxes (if the fluxes were equal), while

theremaining N, —1 coordinates are the partly antisymmetric combinations

= to,—9;—9,)/4
¢b :(¢1_¢2_¢3+¢4)/4

¢c:(¢1_¢2+¢3_¢4)/4. 4)

The N, induced fluxes 7, = B_ uigwci @€ transformed in an identical way. By writing
& =C+a (o, +n,)+bj(¢, +n,)+c (¢, +n.)+5S;(d +1n,), the constraint equations for the four
cells, aong with the demand that the coefficients of the four cross terms C¢| in the kinetic energy

be zero, can be solved to yield a solution for the coefficients {&,b,¢,s} . The transformation

of the original junction phases are then given by

£=C+ (p 1)

2o+ na)+2(¢s+ns+(pi4) nc)
&=¢+ E”;j§<¢a+na)+(¢s+ns)—(¢b+nb)—%<¢c+nc>
E=C - r gt " g @etn) o
& =g+ 2214;(¢a+na)—(¢s+ns)+(¢b+nb)—%(¢c+nc>
& =042 2000 m)- 20,4 n)+ 0 )

It can be seen that the phase of the middle junction &, will have contributions from the fluxes

that are antisymmetric (if all cell fluxes are equal) about the center conductor in addition to that
from the effective junction phase ¢ .

When p =1 the effective phase { may be obtained by summing al of the junction phases and
dividing by five. When p =1, the expression for ¢ will also include flux terms multiplied by a

factor proportional to (o —1). The expression for the junction potential energy may be written

as



VylE; = _z cos(§) — (p—1)cos(E,)

=—2c08[{ + 2257 (0, +1,) + 523 (@, + 1) cos 2(9, + )]
- 2COS[C + Z_:zzl(q)a + na) - Z_:-zzl((pc + nc)] Coq¢s + 775) - (¢b + nb)]
_pCOS[C_ﬁGA,(q)a +na)+p_i4(¢c +nc)]'

(6)

For the case of atwo-cell SQUID, the transformed coordinates and junction potential function
are given by

p
(p+2)

2
(p + 2) ((ba + na) 7

_ p
53 _C_(¢s+ns)+M(¢a+na)i

él:§+(¢s+ns)+ (¢a+na)

& =C~-

and

V, /B, =3 cosg) - (p~Doos(&)

=-2c09{ +-25 (9, + n,)] cosl (@, +1,)]
— pCOS[Z_:_ﬁ(q)a +na)]'

®

For the case of a one-cell SQUID, the transformed coordinates and junction potential energy

are given by

&=C+(@+n)/2
&=C—(0+n)/2 )

and

Vi lE; = _iiz, cog(& ) =—2cos({) cos[ (¢ + 1)/ 2]. (10)



4. B, =0 Solution for a Single SQUID

Using the coordinates given above in Eq. 9, the kinetic energy term in the Hamiltonian may be

written as

T S( % ot energ)

and in dimensionless units as

T hﬂ& 2 Mn 2
_ = 2 + —
E. ZC,T > T
with
M, =28, M, =p./2
n::BLicirc’
E,=1.®,/2x,
where
2 2
ﬁc:C(EEJICRﬁi BL=L(2xl /D), T=0f, wc:aﬂlcRN-

The inductive potential energy may be written as

V, =Ll /2=EBi;. /2=E, Mo n®
with
2 .
a)§ = ’ Icirc = Icircllc'
ﬂCﬂL

The total Hamiltonian, including the forcing current potential, isthen given by
H=T+V,+V,-E,i{,

which yields the equations of motion in terms of the transformed coordinates {{, n} as

ﬁc C’n +C’r +Sn(§) COS[(‘p + 77) / 2] = ib
BoM.e 41, +2c08()sin[(¢ + )/ 2] + B.oyn =0 .

(11

(12)

(13)

(14)

15)

(16)

17)

(18)



For over-damped junctionswe set B =0 and rewrite { as { =0+ /2. The equations of

motion for 6 can then be written in the form used by Swift et al.l as

0,. =1—cos(@)cod (¢ +n)/2]/i, =1+ acos(0)
M. +(21 B )n = 2sin(B)sin[(¢ +1) /2], (19)

where
a=-cod(¢+n)/2]/i, and T = i, (20)

Swift, Strogatz, and Wiesenfeld?> have shown that for a system of single junctions connected in
series, a perturbation theory, based on the exact solution for a single junction, can be developed
to determine the DC voltage for the coupled junction system. The set of relative phases for the
junctions is not determined by the theory, but there are optimal sets where the stability of the
array is maximized. For the SQUID problem, we have extended this theory to determine, in
addition to the perturbed frequency wy[i,,¢oc.B.], the time dependence of the effective

junction phase . = {,(wpt), and theinduced flux ny. = By i oc (OF equivalently adescription
in terms of the two junction phases & and &,) asfunctions of i,, ¢ and S, .

To develop a perturbation expansion for 6 and 71, we rewrite the 6 equation of motion as

6,. =1+a,cog(6) + (a—a,)cos(h), with a, =—cos(¢+(m))/2]/i,, 1)
where
(n)= %JOT n(wt)dr, T=2r/w, n=(n)+an. (22)

Treating the last term as a perturbation, the unperturbed equation of motion for 6 may be

solved exactly yielding
0,(7) = 2tan™(by" tan(g, / 2)), (23)
where
_ . 1-
¢0:\/1_a§T:\/1_a§|bT:on and b, = ﬁ 24



To obtain the first-order correction to the frequency, we use the 6 equation of motion to
write

©_dp_dpdd l-a B A [

i, dr dédr 1+a,cos0) +a, cog(0) +(a-a,) COS(Q)]

:M+%(a—%)cos(e):(wo+5a>)/ib. o
Using the trigonometric identity?!

ey (1:03(00) -1 ?fg?(%) and cos(6,) = % (26)
the expression for the first-order frequency correction may then be written as

b= o ) o) aalo) - ). .

To proceed further it is necessary to solve the equation of motion for 1 to lowest order, whichis
obtained by expanding the sin[(¢ +n) /2] term in the equation of motion to first order in 17, with

solutions given the label 7,
M, +(2/B)n=2s8n(6,)sn[3 (¢ +m)] = 28n(6, { SN(3$)(L— 31" +...) + cos(39) (371~ ...}
Mowe H(21 B)N, = 28In(6, { SIN(Z 9) + COS(39) 371} - (28)

Using the exact zero-order solution for 6,, sin(,) and cos(8,) may be evaluated as

Sin(e):wll—agsin(wof) c0s(6,) = cos(w, T) — a,
°" 1-a,cos(w,T) " 1-a,c08w,T)’ (29)

This allows the re-expression of the lowest order 7, equation of motion as

Mo *+ f(D)[SiN(9/2) +my cos(¢/ 2)] +2m, 1 B =0, 30)

where
sin(@,7) fgn

fo)= 1- a, cos(w,7)’

fon = —2y1-a7. G1)

As afirst-order ordinary differential equation, the 7, equation of motion may be solved exactly
as



sin(¢/2)f(r')ej:

() = _e—J; (21, +cos(9/2) f (z)dr" J'Of (@ reosor2) (" 2
The integral in the two exponential factors may be carried out to yield
['t(er= —J1-a2{In[1- &, cos(@,7)] - i / 2}
0 8,0, ’ (33)
allowing the solution to be written as
M =~ -8 costr2)/aqog) Inf1-ao cos{mgr)])
J_T 20p, e(—\/gcos(WZ)/aowo)ln[l—ao c0(@47")] £, sin(@/2)sin(w,r") i (34)
- (1- &, cos(w,7"))
Dueto the fact that
J1-a2cos(¢/2)/am,)=-1, 35)

the denominator in the integrand is canceled out and the integration can be carried out exactly,
yielding

(1) = —[_gsin(ti) / 2)}[ COs{tT) ~ CIN(hy) }— i S0SL0,T) — CSIn(@,7)

! (1+¢*)(1— 8, cos(,7)) 1-a,cos(@,r) (36)
where
2sn(¢/2)
=2/ y K== ——F/——— |
c=2/(0h.). K [ib 1+c? } (37
The first-order correction to the rotation frequency
. 1 w, 2
8 = i, —=——=—2 [ " (cos(,7) - ay)[a(¢po) - 8 (@,)] 7, )
11— a 2m 90
may now be carried out by expanding a(¢,) in terms of powers of 1,. The integration required
after expanding
a(¢,) = —cos 3 (¢ + 1o ()] /i, (39)

to any desired order in 1,, may be carried out in closed form. To second order in 7, thisyields



. 11
6w——sn(¢/2)<n>(ao—ao)(2ib)

1 1. k2| 1 1+(a,—1)/b (40)
—cos(9/2)(Z-)1 (%) (@ ——)+— 1+ )5},
¢ 8i, {< >a0 8 8| 1-a ay ]}
where
1+a,—by’
(m=—x" 2%
3(1+a,) (41)
and
-1 2 -1
<n2>:K.2 1 bo - +(1+C )(1':ao_bo
(1+a,) (1-4& a (42)
Making the replacement
Wy — Wpe = 0, + 60 (43)

in the expressionsfor 7, and 6, then yieldsthefirst order unperturbed solutions 71,c and 6, .

The unperturbed flux 7,c can also be expressed interms of ¢, as

 _28in(gpc /2)
Toe = @+ ) a-a)

(8- 1+ a-adsn,~ (x/2+y))]

. (44)
=p+asn,—(r/2+y)),
where the phase shift ¥ isgiven by
v =sn| (.8, 12) 11+ (.8, 12) |
. (45)

In this form, 7pc has both a constant and an oscillating component, and the result can be seen to
make sense physically by considering the supercurrent |.Sin({) going through the effective ¢
junction. This current amplitude will be a maximum when § =*x /2, at which point Mo will
be at aminimum (for ¥ = 0) and vice versa. As the SQUID inductance increases from zero, the
oscillating part of Toc will be shifted in phase by an amount that is a function of the flux i,/3, .
Below isaplot showing 1y (black) and 1, obtained by a numerical solution (green) of the

coupled ODEs for i, =1.05, ¢, =0.27 and B, =1.0, where the motion is markedly non-
sinusoidal. It can be seen that the value obtained for the frequency is fairly accurate, while the

10



analytic expression for the amplitude of 7lpc differs from the amplitude of the numerical
solution by about one to two percent.

n

04+

/ ol
03[ ‘;‘ | ““ |
02¢

01l [ / |

-0.1}

02+

Figure 2. SQUID-Induced Flux n(t) vst

3. Linear Response of a SQUID to an RF Signal for the g, =0 Case

To determine the linear response of a SQUID to an rf signal, we write the equations of
motion for the effective phase {

B tC, tiN[ClCOg (¢ + 1) /2] =1, (46)

in terms of the unperturbed solution {§ bes nDC} and denote the linear response to the RF signal

aso¢ , where the RF signal isgiven by 8¢ = Asin(w, 7). Rewriting the equations of motion with

§=Cpc +0C,; and ¢ = ¢y + Asin(w,7) 47)

then yields

0C.¢ . + €O L] oS (Dpc +Mpc )/ 216¢, — SN[ ]SN[(Ppe + Mpc) / 2] 5 sin(w,T) =0, (48)

where we have subtracted out the DC solution and kept only linear termsin 6§ and A Assuming

that the frequency of the RF signal is much less than @, , it is reasonable to average over the

rapid oscillations of {,c and 7pc Which yields

[ +<COS[§DC] cos (Ppc + M)/ 2]>6Crf - <Si N[Coc]SN(@oc + Moc) / 2]>%S.n(wrff) =0. 9

11



The solution for the linear response 8¢ .- can be written in terms of the two correlation functions
as

(50)

(oostguc)eost ™= 3 o%)) s, 7)o, oo, )
)

6, = 5 (3G psinez e —
(oosgac)oost e 3 1)) +
This may be re-expressed in the simpler form of asingle sinusoid as

s n(wrfT - ‘Prﬁ )

\/wﬁ o oo )

(51)

8, = 5 (sn(gpesn P )

where the RF phase shiftsis given by

2
Wy = sinl[a),f /\/wff + <cos(§Dc) cos(%”%» ] (52)

It can be easily seen that ¥'; will approach zero as the signal frequency @, goesto zero. A
useful corollary to this behavior is that as the (coscos) correlation function becomes small and
of the same order as @,; , the RF phase shift will depend sensitively on 3, or ¢ for fixed @,

or conversely it will be asteep function of @, when B, and ¢, arefixed.

By using the expressions

- \/1_ aéc sin(@p 7) : _ COS(@p T)—
COS(CDC) - 1— aDC COS(CODC T) ' Sn(CDC) - 1— aDC COS((DDC T) y (s3)

the correlation functions can expanded to any order in (11,c)" and integrated term by term. Thus

to second order in 1Ny we have

2nlwpc (54)
(cosCoc]col (e * loc) 1 21) = 2 [ cosl e (2] cosi(9oc * Moc (1)) / 2
—-_ Wpc {_ Sin(¢s / 2) KC (1+ e ~ blS%: + COS(‘PS / 2) ch{l_ bBIC + aDc[l_ aDC(1+ e ~ %bsi:)]} }
Iy 2 apc (1~ anc) 4 (1~ 8pc)apc (1+ apc)?

and

(55)

12



Wpc

(Sin[{oc]SiN[(@pc +1pc) 1 2]) = o

[ SN[ e (1SN B + Moc (1)) / 21 dT
= cos(9, /2)8in(9, 1)1, + (cos(o, /2)" + cos(p,  2)~D)7 1, ~ agclcos(o, 12~ 3sn(o, 1 2713 s

2 2 2
~Sin9, 12)008(6, 1 2) - (L)1, + B SN, /2) c0s(p, 1 2) |5 = Sin(o, 1 2)cos(o, 1 2) -
The expressions for the integrals |, through |, are given in appendix A.
Plots of the two correlation functions <sin(CDC)sin(¢D°+%)> and <cos(CDc)cos(¢Dc+nD°)>,

expanded to second order in 7y, are plotted below for i, =1.05 and i, =4 (n.b. vertical scales

differ).

(COS(,EDC)qui(\‘liDC‘H]DC)/z)) (ip=4.0)

(cos(épc)eos((¢pc+ipe)/2))  (ip=1.05)

T, |

P AT AT A T~ |
e o o
S 25

. 10

RS

Figure 3. Figure 4.
(oou(gpe ooy (c00(cpe oo )
vs. @pcand B, with i, =4.0

vs. Ppcand B, with i, =1.05

13



(SiH(EDc)Siﬂ(/((_f{gg+ﬂDc)/2)) (ip=4.0)

(sin(€pc)sin((épc+1pc)/2)

Figure 5. Figure 6.
<S.n(CDC)S-n(¢DC+%)> vs. PpcandpB, , i, =1.05 <S-n(§DC)S.n(¢DC%)> vs. ¢pcand B, i, =4.0

It can be seen that for small values of @oc or B, for any value of iy, or for large B and large iy,
that (coscos) will be small, allowing the RF phase shift to be sensitive to small changes in

frequency. We have plotted the RF phase shift below for B, = 5.0, for signal frequencies from
o, =010 @, =0.0lw,_ . Itcanbe seenthat ¥ is a very steep function of e, for small values

of ¢y for the chosen SQUID parameters (i, = 4 for both plots).

0.070.000
Figure 7. Figure 8.
Two Cell SQUID Phase ¥, vS ¢, and Two Cell SQUID Phase ¥, vs ¢, and
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6. B, =0 Solution for a Two-Cell SQUID

For external magnetic fluxes near ¢, ~0, ¢, ~ 0, the equations of motion for the two-cell

SQUID can be solved using the perturbation method devel oped above for the single cell SQUID.
From the numerical solution for the two-cell case, it can be seen, however, that using the
approximate solution of Eq. 23 for the effective { junction (which consists of a string of single

pulses), will not be valid when the 1, and 1, amplitudes become large enough to markedly affect

the ¢ junction, as shown in the example below.

Loc Voltage  {ip=1.05, ¢2=3.14, $s=1.04} Naoe {ib=1.05, $5=3.14, ¢s=1.04}

focr TNapc

10t
041

08+t
-021L

0.7 —04|
-061L

V120 V150
Figure 9. Figure 10.
Two-Cell SQUID Voltage df,.(t)/drvs.T Two-Cell SQUID Induced Flux 1, (7)vs.T

Nee {ip=1.05, ¢,=3.14, ¢s=1.04}

UL

VTTVUT

Figure 11.
Two-Cell SQUID Induced Flux N (%) vs. T

Tsoc

0.

0)

0.

[«2]

0.

»

0.

l\)

-0.

I\)

-0.

>
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To cover the entire range for ¢, and ¢, it will be necessary to include the time-dependent
n, and 7, solutions in determining ¢(7) and perhaps an iteration of the coupled solutions. In
what follows, we develop the solutions for the case where ¢, and ¢, are near zero.

Using the coordinates given above in Eq. 7, the kinetic energy term in the Hamiltonian may
be written as

C(® i 22 2, 2P .,
=—| = + +2n-+ ]
and in dimensionless units as
T C 2 M 2
(57)
E - — ot nsf > M
with
_2p
= (2_+p)ﬁc' N_Is =2B;, M, = PP
nS = ﬁLSIS’ na = ﬂLaIa' p
ig=(@,+i,)/2, i,=(,—1,)/2, 58)
ﬂLs :ﬁL +.B|v|’ ﬂLa :ﬁL _ﬂM'
The inductive potential energy may be written as
2 2
Vv, = Ll = E, 2 B )i = E; I: MwZn:+3 ;M0 na:l (59)
k,1=1 k=1
with
1 (2+p) 1
= , ®’ :
Beb.. P BB ©0
The total Hamiltonian, including the forcing current potential, isgiven by
H=T+V,; +V, - E;(2+p)i,C, (61)
which yields (using V,;, givenin Eqg. 10) the equations of motion
Mot @ )G, 2800 + 256, + m)lcosl + 1) “

+psin[g — 555 (9, + 1)1 = (2+ p)iy,
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M1, + 2, +2c08{ + 52 (9, +7,)1Sin(@, +1,) + M w1, =0,

and

M a na,rr + 22+pp na,r + 22+Pp S n[c + pr (¢a + na)] COS((PS + 775)
- 22+Pps'n[é/_ 23,3 (¢a + na)] + Mawzf NMa = 0.

7. Solution for the ¢ Equation of Motion for a Two-Cell SQUID with B, =0

(63)

(64)

The equation of motion for { may be solved in essentially the same manner as for the single-

cell SQUID case. Thetwo sin terms are first expanded and regrouped to yield

M, & +(2+p)C, +2sn(0)a, +cos(f)b,] = (2+ p)iy,
with

a, = cosl5; (9, +M,)]cos(@, +1,) + 5 o2, (9, +1,)]
b, =sin[55; (¢, +1m.)lcos(g, +1,) — 7 Sn[ 535 (9, +1,)].
Writing
sin(¢)a, + cos(¢)b; =[sin(¢)cos(y) + cos(g)sin(y)]ya? +bf =sin(¢ +7,)c,
where ye=ten(b, /), ¢ =.aZ+b7,
the lowest order equation of motion for ¢ may then be re-expressed with ¥ = <}/C> as
B (C+7) e +(C+7) +(2¢, /(24 p))sn(C +7) =i,
Changing to a new coordinate
Z=0+y
then yields an equation of motion equivalent to that for a single Josephson junction.
Setting

2c,

a=-—-
i,(2+p)

alows the equations of motion for = =6+ /2 for the . = 0caseto be cast in exactly the

same form as given abovein Eq. 18.

17
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2
2+p

Shown below are surface plots of the critical current C, vs ¢, and ¢, for various values

of p,andvs p forthe-two cell SQUID

Critical Current, p=1
Critical Current, p=4
D

< i{‘\\

=
S

_‘\\“ O =

<3

g

Figure 12. Critical Current vs. {¢a'¢s, p= 1} Figure 13. Critical Current vs. {¢a,¢s, p= 4}

Critical Current, p=0.3

Critical Current, ¢,=2.

Figure 14. Critical Current vs. {q)a,q)s, p= 0.3} Figure 15. Critical Current vs. {¢s, p, ¢, = 2.0}
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Critical Current, ¢=2.

Figure 16.  Critical Currentvs. {¢..p, 9, = 2.0}

8. B, =0 Solution for the n, Equation of Motion

To derive the 1, equation of motion, we first re-express the cos(¢,) and sin(,) termsas
cog({,) = cos(Z, — ¥) = cos(Z;) cog(y) +sin(Z;)sin(y)
_ V1= 8, sin(@, 7)cos(y) + (cos(@, 7) — &,)sin(y)

1- 3, cos(w, 7)
sin(¢,) = sin(Z, — v) = sin(Z;) cos(y) — cos(Z;)sin(y) (72)
_ (cos(@, 7) — &) cos(y) +y/1- 8 sin(w, 7)sin(y)
1- &, cos(@, 7) '

To obtain the equation of motion to first order in 17, we first approximate 1, — (na) =0
to get

M7, + 27, +2c08({ +520,)sn(g, +n,) + Mwin, =0. (73)

The B. = Oequation of motion to first order in 1, may then be written using the results of Eq. 53
as

M.+ f(@)[sin(g,) +n;cos(g,)] +n2 / B, =0, (74)

where

19



()= Sn(Wr) fs, , (CoS(WoT) — &) fpe
1-a,co8(W,7)  1-a,cos(W,T)
_ a2
fon = —y1- 85 cos(y - kp,), (75)
fCOS = Sln(’}/— k¢a)1

and

k=P
2+p (76)

The solutionn? of this first-order ODE can be written as

|, @B reostog) f(zy e 4z’ 77)

sin(e,) f(z)e

[ (@B +eostg) f (z)de T
no(r) = —e VT ,

The integral in the two exponential factors may be carried out to yield

JT f(e)de = —sin(y — ko, )(@,7) — /1— a2 cos(y — k¢, }{In[1— &, cos(@,T)] i / 2}
i EX
, Sin(y —kg,)(1-a3)2tan""ftan(@,7 / 2) / b] (78)

3y,
The tan™ term above may be re-expressed as2tan*[tan(@,7 / 2) / b] = 6,(t) and approximated

by éo () = w,T . With this approximation the solution can be written as

1 f e'sin(g,) f (r')

— —— dr' (79)
[1-8, cos(@,z )]

0 — 4O
0= o [1-2,co8(@eT )~

where

Q, =1/ +cos(g,)sin(y - k,)(y1-a5 -1 /4, (80)

and

A =1+ COS(¢S)COS(Y — k(pa) =1- (2 + P) COS((pS) COS(}/ — k¢a) )
) éOlb ZCOS(¢S) + p

(81)

The final integration required for the 17¢ solution can be carried out by expanding the

denominator in theintegrand asaseriesin @, and can be written as (82)

n2(r)= —Sn:) {fsnll o, F@A=-10) }fmsl(la‘f)’:(f’ls’gs)F(‘Wls195)”,

@,8,(1— 1) [1-3, cos(@,7)] 3| 1- & cos(@, )]

where the evaluation of

20



F(t,2,Q) = j;[l_ AT =T) gy (83)

8, cos@,7)]"

in terms of hypergeometric functions, is presented in Appendix B.
The integration required for the 170 solution can be carried out in closed form if A, =0. This

will betrueif ¢, and ¢, are near 0. With this assumption 77 can be written as

e. cos(@,7) +e,9n(w,7)
1- 3, cos(@,7)

n(r)=e,+ (84)

where
& =sin(g,)sin(y —kp,)a, / Q
&, =—sin(g,)[y/1-a] cos(y - kg,) @, +sin(y — kp,) Q] / (@] +Q°) (85)
e, =—sin(g,)[sin(y - kp,) @, —y/1- & cos(y — k,)Q] / (@] + Q).
Inthelimit of ¥y — O, thisexpression for n° has the same form as that for asingle-cell

SQUID if the doubled cell areais taken into account, i.e,

{n_;!%iﬁ_zl_}_){ns’¢s’ﬁLs}' (86)

9. B, =0 Solution for the n, Equation of Motion

To obtain the equation of motion to first order in 1, we first approximate

COS(¢S + 775) = COS(¢:) = COS((PS) 005(775) —S n((ps)S n(ns) = COS(¢5)(1_ <%7752 >) —S n(¢s ) <775> (87)
to get

M a na,‘n' + ZZTppna,r + 22+pp S n[g + pr ((pa + na)] COS((D;)

(87)
- 22+pps.n[C_ ZEp (¢a + T’a)] + Maws na = 0
The B. = 0 equation of motion to first order in 1, may then be written as
nS, +sin(,){ a, +a,n’} +cos(C,){b, +b,nl} + 202 =0 (88)

where
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a, = cos(kg,) cos(9;) — cos(K¢,)
b, = sin(kg,)cos(9;) +sin(K¢,)
a, = —ksin(kg,)cos(¢;) + K sin(K¢,)
b, = kcos(kp,)cos(¢;) + K cos(K¢,)

and where we have defined

(89)

2

) (90)
2+p

k:L, and K=
2+p

With the 7, equation of motion rewritten as

Ma. *+ f(@)N2 +9(2) +(ina =0 o1

a solution can then be obtained as

o(z)dr", .

[(Hep)pa+fNdT T [ [@+p)BLatf(M]de”
na(7)=—e J ) JO ej" -

where the functions f(r)and 9(7) are given by

f (T) _ Sin(wof) fsin + (COqWOT) - éO) foos
~1-3,c08(W,7)  1—&,cos(W,T)

f,, = —y/1-aZ (kcos(y — kg,) cos(¢; ) + K cos(y + Kg,))
foo= ksin(y—ko,)cos(g:)+Ksin(y +Keg,) ©3)

and

o(r)= 15i Q(Wof)gf-n N (COS(VYOT) - fio)gcos
—a,c0s(W,t)  1-3a,Ccos(W,T)

Osn = 1- & (sin(y - kg,) cos(9?) —sin(y + Kg,))
Oree = (COS(y — kp,) cOS(9) — cos(y + K¢,))

(94)

Theintegral in the two exponential factors may be carried out asin the 7¢ case above to yield

0(r) = o Qut 1 ’ e h(z)
)= e o T o3y o T v
where
Q, = (2+p)/ B, +{ksin(y - kg, cos(g:) + K sin(y + K] %‘” -
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and

L =1 kcos(y — k¢, ) cos(p; ) + K cos(y + K¢a)_ ©7)
2 cos(¢;)

The final integration required for the 1, solution can be carried out by expanding the

denominator in the integrand asa seriesin @, and can be written as
(98)

0 - Osin 1-O F(T’A’a_]ﬂga)
Na (T) {@Oéo (1_ ;La) [ a [1_ éo COS(C?)OT)]L/I&]

+ Goos (1_ ag)F(T’ A’a1Qa) - F(T’ A’a — ]"Qa)
a, [1- &, cost@,7)] ’

T weeny Sn(erh)dt’ © ween Sn(er’)dt’
where the integrals Le [1-acos(@r)]* and Le [1- acos(@r)]* have been

evaluated in Appendix B.
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11. Appendix A
Theintegrals |, through |, are given by

_ L prleosd=a) g 1oa o

' 2md0 1-a,cog(x) a,
_ ijz” cos(X)[cos(x) - csin(X)] , _ {2-1y' +2a5[1-a,(1-a —aj +ab )]} | (-1+2a))
® 2ml [1-a,co8(x))? 2(1-ay)aj(1+a,)’° 21— a,)a2 (1+ 8,)° \1- &

_ 1 peefoosp)—csn()] . _ a,
e M i o
Lol oS0 w28+ da- 280 ai(4- by’ + 21w ) +al(-2+ 6bgY)
2a; (1-3,)*(1+3,)’°

* 2mJo [1-a,cos(x)]?

_(-2+5a + 6a§)}
e
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_ ir” [cos(x) — csin(x)]? dx= 1+2a+c’(1- &)
> 2mdo [1-a,cos(x)]° 2(1- &)™

| =L cosx) 3890,

2w [l-gcos(x)]’ T 2(1-8,) (1+4,)’

12. Appendix B

The integral appearing in Eq. 99 may be evaluated by expanding the integrand denominator in
aseriesin powersof a, whichyields

dr'

JT eW(‘r‘—‘r)
= [1- acos(ot")]*

S [ e {1+ racos(@n) + 22+ EBN 43 41y 4 gy lBXOEL, }
Each term may now be integrated exactly, and the coefficients of each cos(mwr)and sin(mwz) may
be summed to yield a Fourier series with Fourier coefficients proportional to a hypergeometric

function. Thefinal result is given by

dr A an

F(r,l,W)=J'jmeW("‘T)m= R(5.5 La%)/w

R+ 1.87),

N i r'(n+A) (gj” W cos(n@r) + nWsin(nat)
~ T(A)n! {2 (nw)* +W?

Each term in the summation increases the accuracy of the result by roughly one decimal point.
Integration by parts can be employed to determine the integral

[ e sn(@r)dr 1

(M- A codamTt )
(= acosar)] _ @a— Ayt~ el ~Wh(z. 1w)}

The cosine counterpart may be integrated directly to give

[ e % = é{F(T,A,W)—F(T,z_LW)}
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